Functional comparison of the single-layer agarose microbeads and the developed three-layer agarose microbeads as the bioartificial pancreas: an in vitro study.

نویسندگان

  • B Xu
  • H Iwata
  • M Miyamoto
  • A N Balamurugan
  • Y Murakami
  • W Cui
  • M Imamura
  • K Inoue
چکیده

In this study, the insulin secretory characteristics of the microencapsulated hamster islets were studied during long-term culture. The hamster islets were encapsulated as single-layer agarose microbeads or three-layer agarose microbeads with agarose and agarose containing poly(styrene sulfonic acid) (PSSa), respectively. The influence of PSSa on the function of the rat islets microencapsulted in three-layer microbeads was primarily monitored. The aim of this study was to examine the influence of the PSSa on the in vitro function of the islets encapsulated in the agarose/PSSa microbeads compared with single-layer agarose microbeads during long-term culture. The microbeads were cultured for 30 days in medium of Eagle's MEM at 37 degrees C in 5% CO2 and 95% air. The basal insulin secretion into the culture medium was measured daily during the first 12 days and two times per week until 30 days. The microbeads were subjected to static incubation test on the 10th, 20th, and 30th day during culture. The basal insulin secretion level of the agarose/PSSa microbeads was significantly higher than that of single-layer agarose microbeads. The static incubation tests revealed a similar pattern of insulin secretion from both microbeads when they were exposed to high glucose challenge. In the static incubation test, both could significantly increase insulin release to more than 6.61 times (stimulation index) in response to high glucose stimulation and could significantly decrease when glucose concentration returned from high glucose to low glucose on the 10th, 20th, and 30th day of culture. This study demonstrated that the hamster islets enclosed in agarose/PSSa hydrogel not only continuously secreted basal amounts of insulin, but also maintained their response to high glucose stimulation similar to the agarose microbeads. The above results together with those of our previous in vivo study suggest that the three-layer microbeads (agarose/PSSa) are well suitable for xenotransplantation of islets for the clinical application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immobilization of the soluble domain of human complement receptor 1 on agarose-encapsulated islets for the prevention of complement activation.

The transplantation of islets of Langerhans has been successfully applied to the treatment of insulin-dependent diabetes. However, a shortage of human donors is the hardest obstacle to overcome. We aimed to develop a bioartificial pancreas that can realize xeno-islet transplantation. The islets were encapsulated in agarose microbeads carrying the soluble domain of human complement receptor 1 (s...

متن کامل

Modeling and in vitro and in vivo characterization of a tissue engineered pancreatic substitute

This study investigated the model-based design, fabrication and in vitro and in vivo experimental characterization of a pancreatic substitute consisting of mouse insulinoma cells encapsulated in agarose in a disk-shaped construct. Two construct prototypes were examined: (i) a single disk construct comprised of agarose and βTC3 cells; and (ii) a buffered disk construct, consisting of agarose and...

متن کامل

Rapid preparation of megabase plant DNA from nuclei in agarose plugs and microbeads.

Conventional methods for preparation of megabase plant DNA require a protoplast preparation step (1—5). Preparation of protoplasts is tedious and time-consuming. In contrast isolation of nuclei from leaf tissue is simple. Many researchers have attempted to prepare megabase DNA from nuclei (e.g., 3-6) , but no success has been reported. As an alternative approach Guidet and Langridge (6, 7) desc...

متن کامل

Microbead encapsulation of living plant protoplasts: A new tool for the handling of single plant cells1

PREMISE OF THE STUDY Understanding plant cell biomechanics has been hampered by a lack of appropriate experimental tools. Here we introduce a protocol for the incorporation of individual plant protoplasts into precisely sized agarose microbeads. This technology may lead to new ways to manipulate the physical and chemical microenvironment of individual plant cells. METHODS AND RESULTS Living p...

متن کامل

Flow Immunoassay Based on Sequential Injection Using Microbeads

A flow immunoassay based on a combined technique of the sequential injection with the beads injection using magnetic microbeads immobilized with antigen or antibody is described. A methodology of the present immunoassay based on chemiluminescence and electrochemical detection and its application to the determination of vitelloginin (Vg) and anionic surfactant, linear alkylbenzene sulfonate (LAS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell transplantation

دوره 10 4-5  شماره 

صفحات  -

تاریخ انتشار 2001